Stadt Geiselhöring Landkreis Straubing-Bogen / Niederbayern

Bebauungsplan "Hirschling"; Hochwasserberechnung

2.2 ANHANG

Hydraulischer Nachweis der Bauwerke

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: **01**

Gewässer: Kleine Laber

(Verzweigung)

Lage: **GVStr. Tuffing**,

Langhof

Beschreibung: Verrohrung DN600 B

Querschnitt: Unterwasser

1. Eingabedaten:

Höhe Oberwasser:	H-oben	351,021 m ü. NN
Höhe Unterwasser:	H-unten	350,777 m ü. NN
Länge zwischen Ober- und Unterwasser	L	8,847 m

k b -Wert: k b 1,5

durchflossener Querschnitt: A 0,283 m2 (aus CAD) benetzter Umfang: L U 1,884 m (aus CAD)

2. Gefälleermittlung:

3. Hydraulischer Radius:

r by =	0.15	m	
r hy =	0,283	/	1,884
r hy =	Α	/	LU

4. Fließgeschwindigkeit:

Geschwindigkeitsangabe aus Rohrleitungstabellenbuch

v = 3,610 m / s

Q voll =	1,020 m³/s				
Q voll =	3,61	Х	0,283		
Q voll =	V	Х	Α		

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: **02**

Gewässer: Kleine Laber

(Verzweigung)

Lage: Nähe Bahndamm

Beschreibung: Maulprofil

ARMCO MA1

Querschnitt: Unterwasser

1. Eingabedaten:

Höhe Oberwasser:H-oben347,536 m ü. NNHöhe Unterwasser:H-unten346,883 m ü. NNLänge zwischenL14,511 m

Ober- und Unterwasser

k st -Wert: k st 50,0

durchflossener Querschnitt: A 2,283 m2 (aus CAD) benetzter Umfang: L U 5,400 m (aus CAD)

2. Gefälleermittlung:

JE = (H-oben - H-unten) / L)

JE = (347,536 - 346,883) / 14,511)

JE = 0,045000 m/m >>> 45,000 %

3. Hydraulischer Radius:

r hy = A / L U r hy = 2,283 / 5,400

r hy = 0,423 m

4. Fließgeschwindigkeit:

v = k st x r hy ^2/3 x J E ^1/2 v = 50,000 x 0,423 ^2/3 x 0,045 ^1/2

v = 5,977 m / s

5. Abflussleistung des Profils:

Q voll = v x A Q voll = 5,977 x 2,283 Q voll = 13,650 m^3 / s

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: 03

Gewässer: Kleine Laber

(Verzweigung)

Lage: Bahndamm

Beschreibung: Haubenprofil

Querschnitt: Oberwasser

1. Eingabedaten:

Höhe Oberwasser:H-oben0,000 m ü. NNHöhe Unterwasser:H-unten0,000 m ü. NNLänge zwischenL11,838 m

Ober- und Unterwasser

k st -Wert: k st 33,0

durchflossener Querschnitt: A 4,612 m2 (aus CAD) benetzter Umfang: L U 8,118 m (aus CAD)

2. Gefälleermittlung:

JE = (H-oben - H-unten) / L)

JE = (0,000 - 0,000) / 11,838)

JE = 0,000000 m/m >>> 0,000 %

3. Hydraulischer Radius:

r hy = A / L U r hy = 4,612 / 8,118

r hy = 0,568 m

4. Fließgeschwindigkeit:

 $v = k \text{ st} \quad x \quad r \text{ hy} \quad ^{2}/3 \quad x \quad J E \quad ^{1}/2$ $v = 33,000 \quad x \quad 0,568 \quad ^{2}/3 \quad x \quad 0 \quad ^{1}/2$

v = 0,000 m / s

5. Abflussleistung des Profils:

Q voll = v x A Q voll = 0 x 4,612 Q voll = 0,000 m³ / s

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: **04**

Gewässer: Kleine Laber

(Verzweigung)

Lage: **St2142**

Beschreibung: Verrohrung DN500 B

Querschnitt: Oberwasser

1. Eingabedaten:

Höhe Oberwasser:H-oben345,129 m ü. NNHöhe Unterwasser:H-unten344,677 m ü. NNLänge zwischenL52,167 m

Ober- und Unterwasser

k b -Wert: k b 1,5

durchflossener Querschnitt: A 0,196 m2 (aus CAD) benetzter Umfang: L U 1,570 m (aus CAD)

2. Gefälleermittlung:

JE = (H-oben - H-unten) / L)

JE = (345,129 - 344,677) / 52,167)

JE = 0,008664 m/m >>> 8,664 %

3. Hydraulischer Radius:

r hy = A / L U r hy = 0,196 / 1,570

r hy = 0,125 m

4. Fließgeschwindigkeit:

Geschwindigkeitsangabe aus

Rohrleitungstabellenbuch

v = 1,800 m / s

5. Abflussleistung des Profils:

Q voll = v x A Q voll = 1,8 x 0,196 Q voll = 0,350 m³ / s

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: 05

Kleine Laber Gewässer:

(Verzweigung)

Lage: St2142

Brückenbauwerk Hau-Beschreibung:

ben-/Rechteckprofil

Querschnitt: Oberwasser

1. Eingabedaten:

Höhe Oberwasser: H-oben 345,460 m ü. NN Höhe Unterwasser: H-unten 345,353 m ü. NN L 14,341 m Länge zwischen

Ober- und Unterwasser

k st -Wert: k st 55,0

durchflossener Querschnitt: Α 1,763 m2 (aus CAD) benetzter Umfang: L U 5,157 m (aus CAD)

2. Gefälleermittlung:

JE= H-oben H-unten JE= 345,460 345,353 14,341) 0,007461 J E = m/m >>> 7,461 %

3. Hydraulischer Radius:

r hy = LU 1,763 r hy = 5,157

0,342 m r hy =

4. Fließgeschwindigkeit:

JΕ ^1/2 ^1/2 55,000 0,342 ^2/3 0,007461 v =

v = 2,323 m/s

5. Abflussleistung des Profils:

Q voll = Α 2,323 1,763 Q voll = Q voll = 4,100 m³/s

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: **06**

Gewässer: Kleine Laber

(Verzweigung) Nähe

Lage: Nähe

Kleine Laber

Beschreibung: Verrohrung DN800 B

Querschnitt: Oberwasser

2,513 m

(aus CAD)

1. Eingabedaten:

Höhe Oberwasser:	H-oben	338,700 m ü. NN
Höhe Unterwasser:	H-unten	338,608 m ü. NN
Länge zwischen Ober- und Unterwasser	L	11,989 m
k b -Wert:	k b	1,5
durchflossener Querschnitt:	Α	0,503 m2 (aus CAD)

LU

2. Gefälleermittlung:

benetzter Umfang:

JE=		0,007674		m/m >>>			7,674	‰
JE=	(338,700	-	338,608)	1	11,989)
J E =	(H-oben	-	H-unten)	/	L)

3. Hydraulischer Radius:

r hv =	0.200	m	
r hy =	0,503	1	2,513
r hy =	Α	/	LU

4. Fließgeschwindigkeit:

Geschwindigkeitsangabe aus Rohrleitungstabellenbuch

v = 2,280 m / s

Q voll =	1,150 m³/s				
Q voll =	2,28	Х	0,503		
Q voll =	V	Х	Α		

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: 07

Straßenbe-Gewässer:

gleitgraben GVStr. Tuffing, Lage:

Langhof

Beschreibung: Verrohrung DN300 B

Querschnitt: **Oberwasser**

1. Eingabedaten:

Höhe Oberwasser:	H-oben	352,585 m ü. NN
Höhe Unterwasser:	H-unten	352,365 m ü. NN
Länge zwischen Ober- und Unterwasser	L	6,290 m
k b -Wert:	k b	1,5

durchflossener Querschnitt: Α 0,071 m2 (aus CAD) LU benetzter Umfang: 0,942 m (aus CAD)

2. Gefälleermittlung:

JE=		0,034976		m/m >>>			34,976	‰
JE=	(352,585	-	352,365)	/	6,290)
J E =	(H-oben	-	H-unten)	1	L)

3. Hydraulischer Radius:

r hv =	0.075	m	
r hy =	0,071	/	0,942
r hy =	Α	/	LU

4. Fließgeschwindigkeit:

Geschwindigkeitsangabe aus Rohrleitungstabellenbuch

2,600 m/s

Q voll =	0,180 m³/s				
Q voll =	2,6	Х	0,071		
Q voll =	V	Х	Α		

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: 80

Straßenbe-Gewässer:

gleitgraben GVStr. Tuffing, Lage:

Langhof

Beschreibung: Verrohrung DN400 B

Querschnitt: Oberwasser

1,5

1. Eingabedaten:

Höhe Oberwasser: H-oben 350,959 m ü. NN Höhe Unterwasser: H-unten 350,775 m ü. NN L 18,255 m Länge zwischen Ober- und Unterwasser

k b -Wert: k b

durchflossener Querschnitt: Α 0,126 m2 (aus CAD) L U benetzter Umfang: 1,257 m (aus CAD)

2. Gefälleermittlung:

JE= H-oben H-unten JE= 350,959 350,775 18,255) 0,010079 J E = m/m >>> 10,079 %

3. Hydraulischer Radius:

r hy = LU 0,126 1,257 r hy = r hy = 0,100 m

4. Fließgeschwindigkeit:

Geschwindigkeitsangabe aus

Rohrleitungstabellenbuch

1,680 m/s

Q voll =	0,210 m³/s			
Q voll =	1,68	Х	0,126	
Q voll =	V	X	Α	

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: 09

Straßenbe-Gewässer:

gleitgraben GVStr. Tuffing, Lage:

Langhof

Beschreibung: Verrohrung DN400 B

Querschnitt: **Unterwasser**

1. Eingabedaten:

Höhe Oberwasser:	H-oben	350,276 m ü. NN
Höhe Unterwasser:	H-unten	349,903 m ü. NN
Länge zwischen Ober- und Unterwasser	L	7,918 m

k b -Wert: k b 1,5

durchflossener Querschnitt: Α 0,126 m2 (aus CAD) LU benetzter Umfang: 1,257 m (aus CAD)

2. Gefälleermittlung:

```
JE=
                 H-oben
                              H-unten
JE=
                                                  7,918
                350,276
                              349,903
                                                            )
                 0,047108
J E =
                             m/m >>>
                                                    47,108 %
```

3. Hydraulischer Radius:

r hy =	0.100 m		
r hy =	0,126	1	1,257
r hy =	Α	/	LU

4. Fließgeschwindigkeit:

Geschwindigkeitsangabe aus Rohrleitungstabellenbuch

3,640 m/s

Q voll =	0,460 m³/s			
Q voll =	3,64	Х	0,126	
Q voll =	V	х	Α	

Bebauungsplan "Hirschling"; Hochwasserberechnung - Hydraulischer Nachweis der Bauwerke

Bauwerk: 10

Straßenbe-Gewässer:

gleitgraben GVStr. Tuffing, Lage:

Langhof

Beschreibung: Verrohrung DN300 B

Querschnitt: Oberwasser

1. Eingabedaten:

349,390 m ü. NN Höhe Oberwasser: H-oben Höhe Unterwasser: H-unten 348,944 m ü. NN L 9,486 m Länge zwischen Ober- und Unterwasser

k b -Wert: k b 1,5

durchflossener Querschnitt: Α 0,071 m2 (aus CAD) benetzter Umfang: L U 0,942 m (aus CAD)

2. Gefälleermittlung:

JE= H-oben H-unten JE= 349,390 348,944 9,486 0,047017 J E = 47,017 % m/m >>>

3. Hydraulischer Radius:

r hy = LU 0,071 0,942 r hy = r hy = 0,075 m

4. Fließgeschwindigkeit:

Geschwindigkeitsangabe aus

Rohrleitungstabellenbuch

3,010 m/s

5. Abflussleistung des Profils:

Q voll = Α 3,01 0,071 Q voll = 0,210 m3/s Q voll =